11.4 Combined Lateral and Withdrawal Loads

11.4.1 Lag Screws and Wood Screws

When a lag screw or wood screw is subjected to combined lateral and withdrawal loading, as when the fastener is inserted perpendicular to the fiber and the load acts at an angle, α , to the wood surface (see Figure 11F), the adjusted design value shall be determined as follows (see Appendix J):

$$Z_{\alpha}' = \frac{(W'p)Z'}{(W'p)\cos^2\alpha + Z'\sin^2\alpha}$$
(11.4-1)

where:

- α = angle between wood surface and direction of applied load
- p = length of thread penetration in main member, in.

11.4.2 Nails and Spikes

When a nail or spike is subjected to combined lateral and withdrawal loading, as when the nail or spike

is inserted perpendicular to the fiber and the load acts at an angle, α , to the wood surface, the adjusted design value shall be determined as follows:

$$Z_{\alpha}' = \frac{(W'p)Z'}{(W'p)\cos\alpha + Z'\sin\alpha}$$
(11.4-2)

where:

- α = angle between wood surface and direction of applied load
- p = length of penetration in main member, in.

Figure 11F Combined Lateral and Withdrawal Loading

11.5 Adjustment of Reference Design Values

11.5.1 Geometry Factor, C

11.5.1.1 When D < 1/4", $C_{\Delta} = 1.0$.

11.5.1.2 When $D \ge 1/4$ " and the end distance or spacing provided for dowel-type fasteners is less than the minimum required for $C_{\Delta} = 1.0$ for any condition in (a), (b), or (c), reference design values shall be multiplied by the smallest applicable geometry factor, C_{Δ} , determined in (a), (b), or (c). The smallest geometry factor for any fastener in a group shall apply to all fasteners in the group. For multiple shear connections or for asymmetric three member connections, the smallest geometry factor, C_{Δ} , for any shear plane shall apply to all fasteners in the connection. Provisions for C_{Δ} are based on an assumption that edge distance and spacing between rows of fasteners is in accordance with Table 11.5.1A and Table 11.5.1D and applicable requirements of 11.1.

Table 11.5.1A Edge Distance Requirements 1,2

Direction of Loading	Minimum Edge Distance		
Parallel to Grain:			
when $\ell/D \le 6$	1.5D		
when $\ell/D > 6$	1.5D or ½ the spacing be-		
	tween rows, whichever is		
	greater		
Perpendicular to Grain: ²			
loaded edge	4D		
unloaded edge	1.5D		

- 1. The ℓ/D ratio used to determine the minimum edge distance shall be the lesser of:
 - (a) length of fastener in wood main member/D = $\ell_{\rm m}$ /D
 - (b) total length of fastener in wood side member(s)/D = ℓ_s /D
- 2. Heavy or medium concentrated loads shall not be suspended below the neutral axis of a single sawn lumber or structural glued laminated timber beam except where mechanical or equivalent reinforcement is provided to resist tension stresses perpendicular to grain (see 3.8.2 and 10.1.3).

